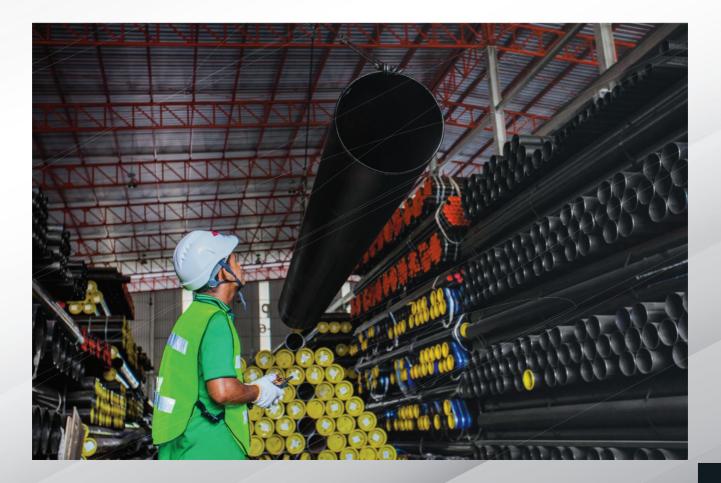


number one in the pipe business, with excellence services and international standards under the SPS Brand.

235 Moo 5, Phuntainorasing Subdistrict Muang Samutsakorn District, Samutsakorn Province Tel : 034-458-005, 034-458-006 Fax : 034-458-009 E-mail : sale@mccsteelpipes.com Line : @mccsteel www.mccsteelpipes.com

MCC Steel Pipes Company Limited


Corporate registration no.: 0745556000925 Day of incorporation: January 29th 2013 Registered capital: 60,000,000 Baht

MCC Steel Pipes Co., Ltd. was founded by a group of executives and staff with extensive expertise and over 20 years experience of working in the steel pipe industry.

The Company distributes international standard products of high quality, operates a highly efficient product delivery system, and focuses on providing its services and products with precision, speed and professionalism. The Company has earned the trust of customers in both government and private sectors, and has participated in many of the country's key projects.

Message from the Chairman

Throughout our business in steel pipe, each and every executive and staff member of MCC Steel Pipe Company Limited is dedicated to providing standardized services and maximizing the satisfaction of our customers to the very best of our ability.

Today we have taken another step up in our organizational development in order to continue growing the Company from its solid foundations, and to become a leading player in the steel pipe industry. To do this we have restructured the image of the organization and implemented information technology in our management. This allows us to deliver a faster and more convenient service, with increased accuracy, thereby providing services that match the demands of our customers.

On this occasion I would like to thank the board of executives as well as every member of staff who has devoted and dedicated their labor and effort, and performed their duties tirelessly, in order for the Company to achieve its goals. I would also like to thank our customers and business allies for their support and trust in the Company for all this time. I wish wholeheartedly that the Company will always enjoy such warm support from you all.

MCC STEEL PIPES

number one in the pipe business, with excellence services and international standards under the SPS Brand.

Our vision

- Commit to customer satisfaction
- Deliver high quality products and services

CONTENT

SPS STEEL PIPE

Specification 6Process Flow 8

CERTIFICATES 15

SPS FITTING

Specification 16Manufacturing Process 18

SPS FLANGE

•	Specification	20
•	Flange Surface Treatment and Package	22
•	Manufacturing Process	23

PROJECT REFERENCE LISTS

24

The Company distributes carbon welded steel pipe and galvanized steel pipe. Our products under the SPS Brand (API5L/ ASTM A53 GRADE B, SCH.40) are of high quality and standard from factory.

There are 3 categories in MCC products

Steel Pipe

Fitting

Flange

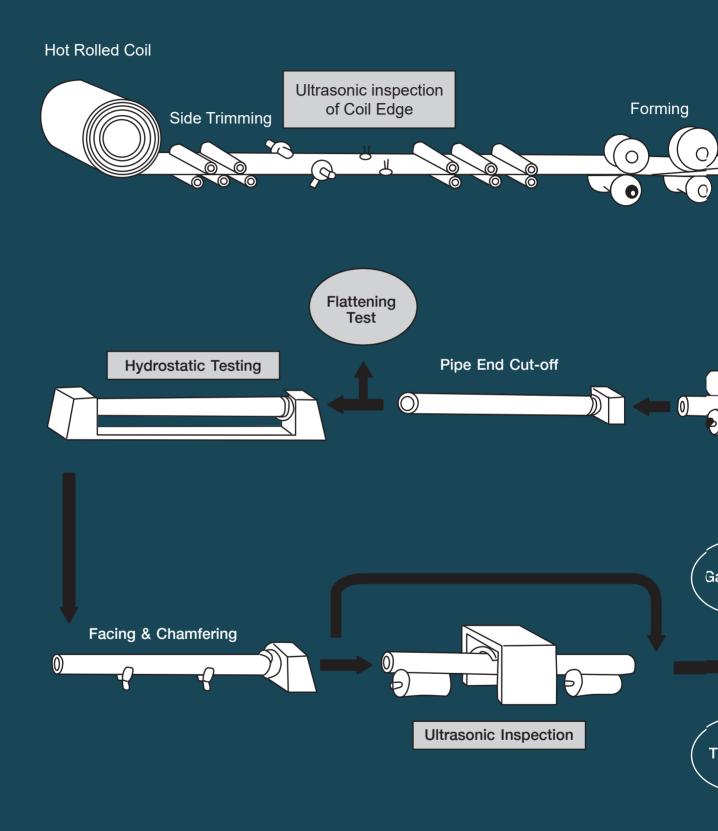
SPECIFICATION

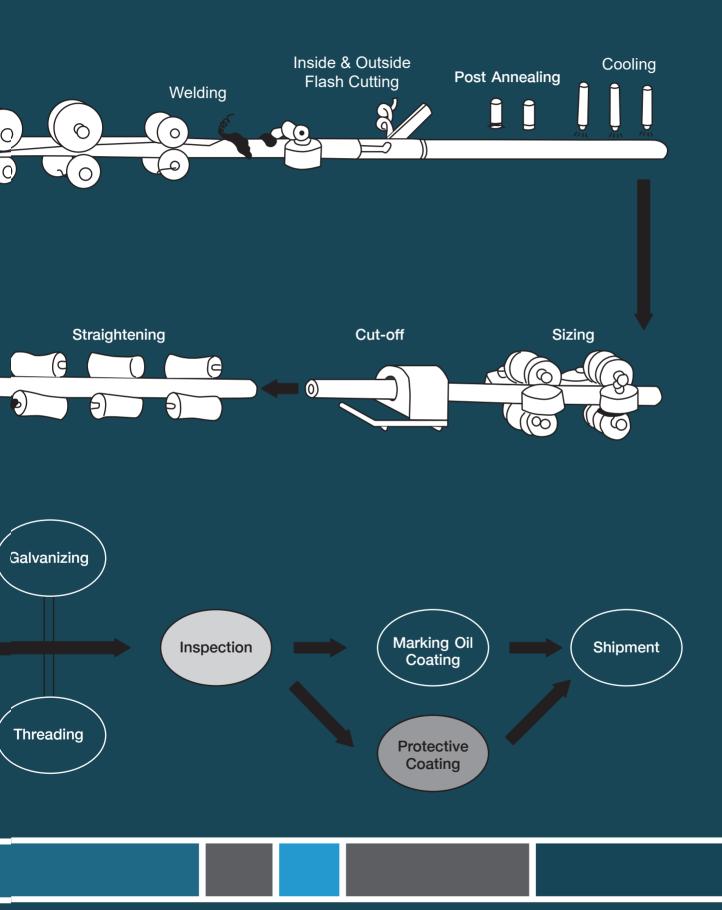
ERW CARBON STEEL PIPE/HOT DIP GALVANIZED

STANDARD : ASTM A53, API5L GR.B PSL1, PSL2 Wall Thickness : SCH20, SCH30, SCH STD, SCH40,SCH80 SIZE: 1/2" - 24"

SEAMLESS CARBON STEEL PIPE

STANDARD : ASTM A106, API 5L , A53 GR.B (L245) PSL1, PSL2


Wall thickness : SCH40, SCH80, SCH160 SIZE : 1/4" - 24"


GALVANIZED STEEL PIPE

STANDARD : BS1387-1985 Wall Thickness : 2.0 - 5.4 mm. SIZE : 1/2" - 6" STANDARD : JIS G 3452 Wall Thickness : 5.0 - 7.0 mm. SIZE : 8" - 12"

PROCESS FLOW

SPS PIPE SPECIFICATION

	Spe	cification	ASTI	M A53		ASTM	A500							ASTM	A513						
Cla	ssification		А	В		4	I	В	МТ 1010	MT 1015	МТХ 1015	МТ 1020	МТХ 1020	1025	1026	1030	1035	4130	8630		
	Applicat	ion	Ordina	ry piping	Genera	al struct	ural pu	rposes				Ma	chine	struct	ural pu	urpose	S				
Che	C(M	lax.)	0.25	0.30	Heat 0.26	Product 0.30	Heat 0.26	Product 0.30	0.05- 0.15	0.10- 0.20	0.10- 0.20	0.15- 0.25	0.15- 0.25	0.22- 0.28	0.22- 0.28	0.27- 0.34	0.31- 0.38	0.28- 0.33	0.28- 0.33		
Chemical composition(%)	Si(№	lax.)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.15-0.35	0.15-0.35		
L con	Mn(ľ	Max.)	0.95	1.20	-	-	-	-	0.30- 0.60	0.30- 0.60	0.60- 0.90	0.30- 0.60	0.70- 1.00	0.30- 0.60	0.60- 0.90	0.60- 0.90	0.60- 0.90	0.40- 0.60	0.70- 0.90		
sodu	P(M	lax.)	0.05	0.05	0.035	0.045	0.035	0.045	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035		
ition	S(M	lax.)	0.045	0.045	0.035	0.045	0.035	0.045	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.040	0.040		
(%)	Otł	ners	-	-	Cu 0.20 (Min.)	Cu 0.18 (Min.)	Cu 0.20 (Min.)	Cu 0.18 (Min.)	-	-	-	-	-	-	-	-	-	Cr 0.80-1.10 Mo 0.15-0.25	Cr 0.40-0.60 Mo 0.15-0.25 Ni 0.40-0.70		
		PSI	48000	60000	R 45000	S 45000	R 58000	S 58000	T	ype	Gr	ade		sile strer Min. (PS		Yield Min.		Elongatio	n Min(%)		
	Tensile strength (Min.)	MPa	330	415	310	310	400	400	As-v	velded	10 10	1010 1015 1020 1025		1015 1020		45000 48000 52000 56000		35 38	000 000 000 000	1: 1: 1: 1:	2
र		kgf/mm ²	33.8	42.2	31.6	31.6	40.8	40.8			1(030 035 010 015		62000 66000 40000 45000		50 25	000 000 000 000 000	10 10 30 30))		
lechanio	Yield	PSI	30000	35000	33000	39000	42000	46000	Norn	nalized	10 10 10	020 025 030 035	4500 5000 5500 6000 6500			35 37 40	000 000 000 000	2! 2! 2! 2!	5		
Mechanical properties	point (Min.)	МРа	205	240	228	269	290	317	. Sink	drawn	10 10 10	010 015 020		50000 55000 60000 65000		40 45 50	000 000 000 000 000	8 8 8 7			
erties		kgf/mm ²	21.1	24.6	23.3	27.4	29.6	32.3			1(1(1025 1030 1035 1010 1015		70000 80000 60000 65000		62 70 50	000 000 000 000	7 7 5 5			
		ngation 1in.)	e = 625.000 A ⁰² / U ⁰⁹			5 + 17.5)		3 + 12)	Mandre	el-drawn el-drawn relieved	10 10 10 10 10 10 10 10 10	020 025 030 035 010 015 020 025 030 035		70000 75000 85000 90000 55000 60000 65000 70000 80000 85000		650 750 800 450 550 550 600 700	000 000 000 000 000 000 000 000 000 00	5 5 5 1; 1; 1; 10 10 10 10	2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Flattening test	H : Distance Flattenin plates(m) H': Inside di between plates(m) D : Outside di of the pi D': Inside di the pipe t : Wall thick	g m) sance flattening m) diameter ,pe(mm) ameter of (mm)	Weld H Base H= Welde	2 over = 2/3D metal 1/3D ed part is t 90 degree	Sou	Base meta ndness Te	= 2/3D l H = 1/3E st H = Cor cated at 90	ntact				We	Bas	e metal	: H = 2/3 H = 1/3[ited at 90						
Bending test	the pipe(Bending and radius (D : Outside of the p	gle X Inside diameter	90° x close (below 12D coiling ° x 8D	-																
Hydrostatic test			P=	St			-						P=		fiber sti	ress of ?	14000P:	5l or 96.5N	1Pa		
(N	NDT on-Destruct		о	onic Test r ırrent test			-						Ultra	-	Current st or Flu:	Test or k leakage	e Test				
	Other	S	coa Ave Min. 5 Indiv	it of zinc ating irage : 50 g/m ² <i>v</i> idual : 490 g/m ²			-						IC	ID` = ' D`: In	laring Te 1.15D`(60 iside dia ied insid)° tool)	er				

SPS PIPE SPECIFICATION

	Specification Classification			_	ASTM A58	9	_	BS 1387		BS 3601		BS	3602	BS 1775			
Cla	Classification		түі	PE 1	TYPE 2	ТҮРЕ З	TYPE 4	(L)Light (M)Medium (H)Heavy	ERW 320	ERW 360	ERW 430	ERW 360	ERW 410	ERW 11	ERW 16	ERW 20	ERW 23
	Appli	ication	Drive Pipe (Grade A)	Drive Pipe (Grade B)	Water-Well Reamed and Drifted Pipe (Grade A)	Driven Well Pipe (Grade A)	Water-Well Casing Pipe (Grade A)	Ordinary piping	Р	ressure service	'S	High-press	ure services	Machine structural purposes, General structural purposes			
Che		C(Max.)	-	-	-	-	-	0.20	0.16	0.17	0.21	0.17	0.21	-	-	-	-
mica		Si(Max.)	-	-	-	-	-	-	-	0.35	0.35	0.35	0.35	-	-	-	-
l com	•	In(Max.)	-	-	-	-	-	1.20	0.30-0.70	0.40-0.80	0.40-1.20	0.40-0.80	0.40-1.20	-	-	-	-
Iposi		P(Max.)	0.050	0.050	0.050	0.050	0.050	0.045	0.040	0.040	0.040	0.045	0.045	0.060	0.060	0.060	0.060
Chemical composition(%)		S(Max.)	0.060	0.060	0.060	0.060	0.060	0.045	0.040	0.040	0.040	0.045	0.045	0.060	0.060	0.060	0.060
%)		Others	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Tensile	PSI	48000	60000		48000		-	-	-	-	-	-	-	-	-	-
Mech	strength (Min.)	МРа	331	413		331		320-460	320-460	360-500	430-570	360-500	410-550	309	386	463	494
Ianica		kgf/mm ²	33.8	42.1		33.8		32.7-46.9	32.7-46.9	36.7-51.0	43.9-58.2	36.7-51.0	41.8-56.1	31.5	39.4	47.2	50.4
Mechanical properties	Yield	PSI	30000	35000		30000		-	-	-	-	-	-	-	-	-	•
opert	point (Min.)	MPa	207	241		207		195	195	235	275	215			247	309	355
ies		kgf/mm ²	21.1	24.6		21.1		19.9	19.9	24.0	28.1	21.9	25.0	17.3	25.2	31.5	36.2
	Elon	gation(Min.)			e=625,000(A ^{0.2} /	U ^{0.9})		20	25	25	22	24	22		600/TS(TS : Ton/in ²		
Flattening test	H : Distance Flattening p H`: Inside d flattenin D : Outside of the pi D`: Inside d	olates isance between g plates diameter pe			-			DN Over 50 Welded part H = 0.75D Base metal H = 0.60D Welded part is located at 90 degree	H= (1+ e+ Class 320 360	Const	ant Base metal 0.10 0.09	H= <u>-(</u>	l+e)t +t/D	H`=3t or H`=1/2D` whichever is the smaller	H`=6t or H`=3/4D` whichever is the smaller	H`=8t or H`=7/8D` whichever is the smaller	H`=6t or H`=3/4D` whichever is the smaller
#	the pipe t : Wall thic the pipe								460	0.023	0.08	e=0.10	e=0.08				
Bending test	Bending angle X Inside radius			-					-			Outside diameter of bar is 4t			-		
Hydrostatic test	Hydrostatic S : Fiber stress, PSI(mPa) D : Outside diameter(mm) t : Thickness(mm)		Prescribed according to dimension and grade					51 (50 bar)		St the specified yield strength	h	P= <u>20St</u> (bar) D S: 80% of the specified minimum yield strength Max: 143Kgf/cm2 (140 bar)					
	NDT (Non-Destructive Test)				-			Eddy Current Test(substitut e with hydrostatic test)	(Applied diamete	dy Current Te to pipes with r of 180mm o on for hydros	Outside r less as	Ultrasc	nic Test		-		
	Ot	hers			-			Bore Test(hotdip zinc coated					oy V-notch		Drift Expar	nding Test	
	Others							zinc coated tubes)				Impa	ct test	1D= 1.125D`	1D= 1.10D`	1D= 1.075D`	1D= 1.10D`

CARBON AND GALVANIZED STEEL PIPE ASTM A53 GR.B

NPS	Outs	ide	W	all			Nominal	Weight			Weight	Schedule				Test Pr	essure			
Designator	Diam	eter	Thick	ness		Plain Enc	I	Threa	ds & Cou	plings	weight	Schedule		Plain	End		т	hreads &	Coupling	s
													Gra	de A	Gra	de B	Gra	de A	Gra	de B
inch	inch	mm.	inch	mm.	lb/ft	kg/ft	kg/m	lb/ft	kg/ft	kg/m	class	No.	psi	kpa	psi	kpa	psi	kpa	psi	kpa
1/2	0.840	21.3	0.109	2.77	0.85	0.39	1.27	0.85	0.39	1.27	STD	40	700	4830	700	4830	700	4830	700	4830
3/4	1.500	26.7	0.113	2.87	1.13	0.52	1.69	1.13	0.52	1.69	STD	40	700	4830	700	4830	700	4830	700	4830
1	1.315	33.4	0.133	3.38	1.68	0.76	2.50	1.68	0.76	2.50	STD	40	700	4830	700	4830	700	4830	700	4830
1 1/4	1.660	42.2	0.140	3.56	2.27	1.03	3.39	2.28	1.04	3.40	STD	40	1200	8270	1300	8960	1000	6890	1100	7580
1 1/2	1.900	48.3	0.145	3.68	2.72	1.23	4.05	2.73	1.24	4.04	STD	40	1200	8270	1300	8960	1000	6890	1100	7580
2	2.375	60.3	0.154	3.91	3.65	1.66	5.44	3.68	1.66	5.46	STD	40	2300	15860	2500	15860	2300	15860	2500	17240
2 1/2	2.875	73.0	0.203	5.16	5.79	2.63	8.63	5.82	2.64	8.67	STD	40	2500	17240	2500	17240	2500	17240	2500	17240
3	3.500	88.9	0.216	5.49	7.58	3.44	11.29	7.62	3.46	11.35	STD	40	2220	15310	2500	17240	2200	15170	2500	17240
3 1/2	4	101.6	0.226	5.74	9.11	4.18	13.57	9.20	4.18	13.71	STD	40	2030	14000	2370	16340	2000	13790	2400	16550
4	4.500	114.3	0.237	6.02	10.79	4.95	16.07	10.89	4.95	16.23	STD	40	1900	13100	2210	15240	1900	13100	2200	15170
5	5.563	141.3	0.258	6.55	14.62	6.64	21.77	14.81	6.73	22.07	STD	40	1670	11510	1950	13440	1700	11720	1900	13100
6	6.625	168.3	0.280	7.11	18.97	8.61	28.26	19.18	8.71	28.58	STD	40	1520	10480	1780	12270	1500	10340	1800	12410
8	8.625	219.1	0.250	6.35	22.36	10.15	33.31	-	-	-	-	20	1040	7170	1220	8410	-	-	-	-
0	0.025	219.1	0.322	8.18	28.55	12.97	42.55	29.35	13.33	43.73	STD	40	1340	9240	1570	10820	1300	8960	1600	11030
10	10.750	273.0	0.250	6.35	28.04	12.73	41.75	-	-	-	-	20	840	5790	980	6760	-	-	-	-
10	10.750	275.0	0.365	9.27	40.48	18.38	60.29	41.85	19.31	63.36	STD	40	1220	8410	1430	9860	1200	8270	1400	9650
			0.250	6.35	33.38	15.15	49.71	-	-	-	-	20	710	4900	820	5650	-	-	-	-
12	12.750	323.8	0.375	9.52	49.56	22.49	73.78	51.15	23.23	76.21	STD	-	1060	7310	1240	8550	1100	7580	1200	8270
			0.406	10.31	53.52	24.29	79.70	-	-	-	-	40	1160	7930	1340	9240	-	-	-	-
			0.312	7.92	45.61	20.70	67.90	-	-	-	-	20	800	5520	940	6480	-	-	-	-
14	14	355.6	0.375	9.52	54.57	24.77	81.25	-	-	-	STD	30	960	6620	1120	7720	-	-	-	-
			0.438	11.13	63.44	28.82	94.55	-	-	-	-	40	1130	7790	1310	9030	-	-	-	-
			0.312	7.92	52.27	23.72	77.83	-	-	-	-	20	700	4830	820	5650	-	-	-	-
16	16	406.4	0.375	9.52	62.58	28.40	93.17	-	-	-	STD	30	840	5790	980	6760				
			0.500	12.70	82.77	37.58	123.30	-	-	-	XS	40	1120	7720	1310	9030	-	-	-	-
			0.312	7.92	58.94	26.75	87.75	-	-	-	-	20	620	4270	730	5030	-	-	-	-
18	18	457.2	0.375	9.52	70.59	32.03	105.10	-	-	-	STD	-	750	5170	880	6070				
			0.562	14.27	104.67	47.51	155.87	-	-	-	-	40	1120	7720	1310	9030	-	-	-	-
20	20	500.0	0.375	9.52	78.60	35.67	117.02	-	-	-	STD	20	680	4690	790	5450	-	-	-	-
20	20	508.0	0.594	15.09	123.11	55.91	183.42	-	-	-	-	40	1170	8070	1250	8620	-	-	-	-
24	24	600.0	0.375	9.52	94.62	42.94	140.88	-	-	-	STD	20	560	3860	660	4550	-	-	-	-
24	24	609.6	0.688	17.48	171.29	77.80	255.24	-	-	-	-	40	1030	7100	1200	8270	-	-	-	-
26	26	660.4	0.375	9.52	102.6	46.59	152.80	-	-	-	STD	-	520	3590	610	4210	-	-	-	-
28	28	711.0	0.375	9.52	110.6	50.09	164.30	-	-	-	STD	-	480	3300	560	3900	-	-	-	-
30	30	762.0	0.375	9.52	118.7	53.73	176.30	-	-	-	STD	-	450	3100	520	3600	-	-	-	-

Dimension Tolerances : Permissible Variation Outside Diameter :

- Outside Diameter : $1 \frac{1}{2}$ and under +/- 1/64" (0.4 mm.)
 - : 2" and over +/- 1%
 - : -12.5% + Not Specified

CARBON AND GALVANIZED STEEL PIPE API 5L GR.B

Norminal	Out	side	W	all	Na			14/-1-64	Calculate	Minimum test pressure (kpa x 100)			
Size	Diam	neter	Thick	cness	NO	minal Weig	gnt	Weight	Schedule	Minin	ium test pre	essure (kpa	x 100)
										Gra	de A	Gra	de B
inch	inch	mm.	inch	mm.	lb/ft	kg/ft	kg/m	class	No.	Std.	Alt.	Std.	Alt.
1/2	0.840	21.3	0.109	2.8	0.85	0.39	1.28	STD	40	48	-	48	•
3/4	1.050	26.7	0.113	2.9	1.13	0.51	1.70	STD	40	48	-	48	-
1	1.315	33.4	0.133	3.4	1.68	0.76	2.52	STD	40	48	-	48	-
1 1/4	1.660	42.2	0.140	3.6	2.27	1.03	3.43	STD	40	83	-	90	-
1 1/2	1.900	48.3	0.145	3.7	2.72	1.23	4.07	STD	40	83	-	90	•
2	2 3/8	60.3	0.154	3.9	3.66	1.66	5.42	STD	40	161	172	172	172
2 1/2	2 7/8	73.0	0.203	5.2	5.80	2.63	8.69	STD	40	172	172	172	172
3	3 1/2	88.9	0.216	5.5	7.58	3.44	11.31	STD	40	154	172	172	172
3 1/2	4	101.6	0.226	5.7	9.12	4.14	13.48	STD	40	139	174	162	193
4	4 1/2	114.3	0.237	6.0	10.80	4.90	16.02	STD	40	130	163	152	190
5	5 9/16	141.3	0.258	6.6	14.63	6.64	21.92	STD	40	116	145	135	169
6	6 5/8	168.3	0.280	7.1	18.99	8.61	28.22	STD	40	105	131	122	153
	0.5.0	010.1	0.250	6.4	22.38	10.15	33.57	-	20	73	91	84	106
8	8 5/8	219.1	0.322	8.2	28.58	12.96	42.65	STD	40	93	116	108	135
10	10.2/4	272.4	0.250	6.4	28.06	12.73	42.09	-	20	58	73	68	85
10	10 3/4	273.1	0.365	9.3	40.52	18.38	60.50	STD	40	85	106	98	123
			0.250	6.4	33.41	15.15	50.11	-	20	49	61	57	71
12	12 3/4	323.9	0.375	9.5	49.61	22.50	73.65	STD	-	73	91	85	106
			0.406	10.3	53.57	24.30	79.65	-	40	79	99	92	115
			0.312	7.9	45.65	20.71	67.74	-	20	55	69	62	80
14	14	355.6	0.375	9.5	54.62	24.78	81.08	STD	-	66	83	77	97
			0.438	11.1	63.50	28.80	94.30	-	40	78	97	90	113
			0.312	7.9	52.32	23.73	77.63	-	20	48	60	56	70
16	16	406.4	0.375	9.50	62.64	28.41	92.98	STD	-	58	73	68	85
			0.500	12.70	82.85	37.58	123.30	-	40	78	97	90	113
			0.312	7.9	58.99	26.76	87.49	-	20	43	54	50	62
18	18	457.0	0.375	9.5	70.65	32.05	104.84	STD	-	52	65	60	75
			0.562	14.3	104.76	47.52	156.11	-	40	78	97	90	113
20	20	508.0	0.375	9.5	78.67	35.68	116.78	STD	20	46	58	54	68
20	20	500.0	0.625	15.1	129.45	58.66	192.95	-	40	78	97	91	113
24	24	610.0	0.375	9.5	94.71	42.92	140.68	STD	20	39	48	45	56
24	24	010.0	0.688	17.5	171.45	77.70	255.69	-	40	71	89	83	104
26	26	660.0	0.375	9.5	102.72	46.55	152.39	STD	-	36	45	42	52
28	28	711.0	0.375	9.5	110.74	50.19	164.34	STD	-	33	41	39	48
30	30	762.0	0.375	9.5	118.65	53.73	176.29	STD	-	31	39	36	45

Dimension Tolerances : Permissible Variation Outside Diameter :

Outside Diameter : $1 \frac{1}{2}$ " and under +/- $\frac{1}{64}$ " (0.4 mm.)

Wall Thickness

: 2" and over +/- 1%

: -12.5% + Not Specified

STANDARD BS 1387 : 1985 LIGHT CLASS BLACK & GALVANIZED STEEL PIPE

Nor	minal		Outside	Diameter		Wall		Calculate	ed Weight	
s	ize	M	ах	м	in	Thickness	Plain	Ends	Threads &	ያ Coupling
0	N	In.	mm.	In.	mm.	mm.	lb./ft.	(kg./m.)	lb./ft.	(kg./m.)
1/2	(15)	0.841	21.40	0.825	21.00	2.0	0.640	0.947	0.646	0.959
3/4	(20)	1.059	26.90	1.041	26.40	2.3	0.944	1.38	0.954	1.39
1	(25)	1.328	33.80	1.309	33.20	2.6	1.350	1.98	1.360	2.00
1 1/4	(32)	1.670	42.50	1.650	41.90	2.6	1.730	2.54	1.750	2.57
1 ^{1/2}	(40)	1.903	48.40	1.882	47.80	2.9	2.190	3.23	2.220	3.27
2	(50)	2.370	60.20	2.347	59.60	2.9	2.760	4.08	2.810	4.15
2 ^{1/2}	(65)	2.991	76.00	2.960	75.20	3.2	3.900	5.71	3.980	5.83
3	(80)	3.491	88.70	3.460	87.90	3.2	4.580	6.72	4.690	6.89
4	(100)	4.481	113.90	4.450	113.00	3.6	6.640	9.75	6.840	10.00

STANDARD BS 1387 : 1985 MEDIUM CLASS BLACK & GALVANIZED STEEL PIPE

Norn	ninal		Outside I	Diameter		Wall		Calculate	ed Weight		
Si	Size Max		ах	м	in	Thickness	Plain	Ends	Threads & Coupling		
D	N	In.	mm.	In.	mm.	mm.	lb./ft.	(kg./m.)	lb./ft.	(kg./m.)	
1/2	(15)	0.856	21.70	0.831	21.10	2.6	0.811	1.21	0.818	1.220	
3/4	(20)	1.072	27.20	1.047	26.60	2.6	1.046	1.56	1.053	1.57	
1	(25)	1.346	34.20	1.316	33.40	3.2	1.616	2.41	1.629	2.43	
1 1/4	(32)	1.687	42.90	1.657	42.10	3.2	2.079	3.10	2.099	3.13	
1 ^{1/2}	(40)	1.919	48.80	1.889	48.00	3.2	2.394	3.57	2.421	3.61	
2	(50)	2.394	60.80	2.354	59.80	3.6	3.373	5.03	3.420	5.10	
2 ^{1/2}	(65)	3.014	76.60	2.969	75.40	3.6	4.312	6.43	4.392	6.55	
3	(80)	3.524	89.50	3.469	88.10	4.0	5.613	8.37	5.727	8.54	
4	(100)	4.524	114.90	4.459	113.30	4.5	8.181	12.20	8.382	12.50	
5	(125)	5.534	140.60	5.459	138.70	5.0	11.131	16.60	11.467	17.10	
6	(150)	6.539	166.10	6.459	164.10	5.0	13.210	19.70	13.612	20.30	

STANDARD BS 1387 : 1985 HEAVY CLASS BLACK & GALVANIZED STEEL PIPE

Nor	minal			Diameter		Wall		Calculat	ed Weight	
s	ize	Ma	ах	м	in	Thickness	Plain	Ends	Threads &	ያ Coupling
	N	In.	mm.	In.	mm.	mm.	lb./ft.	(kg./m.)	lb./ft.	(kg./m.)
1/2	(15)	0.856	21.70	0.831	21.10	3.2	0.966	1.44	0.972	1.45
3/4	(20)	1.071	27.20	1.047	26.60	3.2	1.254	1.87	1.261	1.88
1	(25)	1.346	34.20	1.316	33.40	4.0	1.971	2.94	1.985	2.96
1 1/4	(32)	1.685	42.90	1.657	42.10	4.0	2.548	3.80	2.568	3.83
1 ^{1/2}	(40)	1.917	48.80	1.889	48.00	4.0	2.937	4.38	2.964	4.42
2	(50)	2.394	60.80	2.354	59.80	4.5	4.151	6.19	4.198	6.26
2 ^{1/2}	(65)	3.016	76.60	2.969	75.40	4.5	5.318	7.93	5.398	8.05
3	(80)	3.523	89.50	3.469	88.10	5.0	6.907	10.30	7.041	10.50
4	(100)	4.523	114.90	4.459	113.30	5.4	9.723	14.50	9.924	14.80
5	(125)	5.535	140.60	5.459	138.70	5.4	12.003	17.90	12.338	18.40
6	(150)	6.539	166.10	6.459	164.10	5.4	14.283	21.30	14.685	21.90

TECHNICAL SPECIFICATIONS :

TECHNIN	ECHNICAL SPECIFICATIONS .									
	Chemical	Compositio	n (%)		Mechanical Proper	ties				
C Max.	Mn Max.	P Max.	S Max.	Tensile Strength	Yield Strength	Elongation (%) Min.	Test (bar)			
0.20	1.20	0.045	0.045	320-460 N/mm. ²	195 N/mm. ²	20	50			
DIMENS	ION TOLE	RANCES :								
Toleran	ce		Light Cla	ss	Medium Class	Heavy Class				
Wall Thi	.ckness :		- 8% + not specified - 10% + not specified - 10% + not specified							
Length :	Length : + 50mm., - 0mm.									
Weight	:		+10%, - 89	% per piece / + 4% per bun	dle (over 500 ft.)					

STEEL PIPES

IC-002 (24/01/49) Rev.01	
	TISTR
HAILAND INSTITUTE OF SCIENTIFIC	AND TECHNOLOGICAL RESEARCH (TISTR)
	AND DEVELOPMENT CENTRE (MPAD)
Request No. : MPL0348/57	Date: 23 January 2014
Date of request : 14 January 2014	Page : 1 of 15
REPORT ON A	ANALYSIS / TESTING
	For
	L PIPES CO., LTD. phur Muang-Samutsakorn, Samutsakorn 74000
ssting/analysis/investigation of :	SPS STEEL PIPE ASTM A 53 GR. B/API 5L GRADE B SCH.40 NB 1/2", NB 3/4", NB 1", NB 1 1/4", NB 1 1/2", NB 2", NB 2 1/2", NB 3", NB 4", NB 5", NB 6", NB 8", NB 10", NB 12", NB 14" and NB 16"
Iethod of testing/analysis/investigation :	Hydrostatic Test with reference to ASTM A53/A 53 M-07 by following Manual of High-Pressure Pump.
Result of testing/analysis/investigation :	
The resul	ts are attached.
Fested/analysed/investigated by	Approved by Schult (Pratip Vongbandit, Ph.D.)
3	Acting Director of Material Performance Analysis Laboratory
Examined by	TISIR
(Duagporn Ounpanich, D. Eng)	
This report contains 15 pages, all pages must h	be signed by the authorized person for report approval.
	FS-MPAD-GEN-510-1-01/10/56
Remark : The above results are valid exclusively for tested/analysed Publicity of the results on testing and analysis is prohibite	samples as mentioned in this report. d unless written permission is obtained from the governor of TISTR.
35 Moo 3, Technopolis Tambon Khlong Tel. (86) 0 2	entific and Technological Research 5 Amphoe Kilong Luang Pathum Thani 12120 Thaland 577 9000 Fax 0 257 9000 fronth Websie www.sitar.orth

สถาบันเหล็กและเหล็กกล้าแห่งประเทศไทย

IRON AND STEEL INSTITUTE OF THAILANE

: 570486

: November 20, 2013

: MCC Steel Pipes Co.,Ltd

Method of Test/Anaysis : 1. Emission Spectroscopy : Chemical composition test

2. JIS Z 2241-2011 : Tensile test 3. Flattening test Test/Analysis Result : The Results are Attached 1 to 3

ISIT No. 0664/2014

Request No.

Customer

Date of Request

Type of Sample

Tested by D. NEWport

Tested by the St

1: F

(Mr.Komgrit Isariyakul)

Material Testing&Analysis Officer

1. The above results are valid exclusively for tested/analysed samples as mentioned in this report.

2. Publication of the results on testing and analysis is prohibited unless written permission is obtained from the governor of ISIT

(Mr.Nitipat Intarasamai) Material Testing&Analysis Officer TESTING CENTER

Test/Analysis Report

235 Moo 5 T. Phuntainorsing A. Samutsakorn, Samutsa

: ASTM/ASME A/SA 53 Grade B SCH 40 / API5L Grade BSCH40

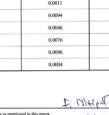
Page 1 of 16

December 16, 2013

korn 74000

Approved by ...

(Mr.Prachuab Longsuwan)


and what

(Mr.Pasin Placksiri)

Technical Department Director Assistant

Academic Team

REPORT Page : 7 of 15 Results : The results are as follows : Cont. Description/Part No. Test Pressure (Bar) Maintaining Period (Min.) SPS STEEL PIPE ASTM A53 GR. B/API 5L GRADE B SCH.40 No leak (Fi NB 5" NB 4" 180 1 No leak (Fi NB 5" NB 6" 145 1 No leak (Fi NB 10" NB 8" 130 1 No leak (Fi NB 12" NB 10" 100 1 No leak (Fi NB 12" NB 14" 90 1 No leak (Fi NB 14"		TISTR		
Bequest No. : MPL0348/57 Date : 23 January Customer : MCC Steel Pipes Co., Ltd. REPORT Page : 7 of 15 Results : The results are as follows : Cont. Page : 7 of 15 Description/Part No. Test Pressure (Bar) Maintaining Period (Min.) Results SPS STEEL PIPE ASTM A53 GR. B/API 5L GRADE B SCH.40 NB 4" 180 1 No leak (Fi No leak (Fi NB 5" No leak (Fi No leak (Fi NB 6" No leak (Fi No leak (Fi NB 10" No leak (Fi No leak (Fi NB 12" 93 1 No leak (Fi No leak (Fi NB 14" No leak (Fi No leak (Fi NB 16" No leak (Fi No leak (Fi NB 16" No leak (Fi No leak (Fi NB 16" No leak (Fi No leak (Fi No leak (Fi No leak (Fi NB 16" No leak (Fi No leak (F				
REPORT Page : 7 of 15 Customer : MCC Steel Pipes Co., Ltd. Page : 7 of 15 Results : Page : 7 of 15 Results : Page : 7 of 15 Description/Part No. Test Pressure (Bar) Maintaining Period (Min.) SPS STEEL PIPE ASTM A53 GR. B/API 5L GRADE B SCH.40 No leak (Fi NB 4" 180 1 No leak (Fi NB 5" 160 1 No leak (Fi NB 6" 145 1 No leak (Fi NB 10" 100 1 No leak (Fi NB 12" 93 1 No leak (Fi NB 12" 93 1 No leak (Fi NB 14" 90 1 No leak (Fi NB 16" 90 1 No leak (Fi				
Results : The results are as follows : Cont. Description/Part No. Test Pressure (Bar) Maintaining Period (Min.) SPS STEEL PIPE ASTM A53 GR. B/API 5L GRADE B SCH.40 B 1 No leak (Fi NB 5" NB 4" 180 1 No leak (Fi NB 6" 145 1 No leak (Fi NB 10" NB 10" 100 1 No leak (Fi NB 12" 93 1 No leak (Fi NB 14" NB 14" 90 1 No leak (Fi NB 16" No leak (Fi NB 16" No leak (Fi NB 16"		REPORT		Date: 23 January 201
The results are as follows : Cont. Description/Part No. Test Pressure (Bar) Maintaining Period (Min.) Results SPS STEEL PIPE ASTM A53 GR. B/API 5L GRADE B SCH.40 NB 4" 180 1 No leak (Fi NB 5" NB 4" 180 1 No leak (Fi NB 6" 145 1 No leak (Fi NB 10" NB 10" 100 1 No leak (Fi NB 12" 93 1 No leak (Fi NB 14" NB 16" 90 1 No leak (Fi NB 16" 1 No leak (Fi NB 16"	istomer : MCC Steel Pipes Co., Ltd.			Page: 7 of 15
Description/Part No. Test Pressure (Bar) Maintaining Period (Min.) Results SPS STEEL PIPE ASTM A53 GR. B/API 5L GRADE B SCH.40 -	Results :			
Description/Part No. Test Pressure (Bar) Maintaining Period (Min.) Results SPS STEEL PIPE ASTM A53 GR. B/API SL GRADE B SCH.40 -				
(Bar) Period (Min.) SPS STEEL PIPE ASTM A53 GR. - - B/API 5L GRADE B SCH.40 - - NB 4" 180 1 No leak (Fi NB 5" 160 1 No leak (Fi NB 6" 145 1 No leak (Fi NB 8" 130 1 No leak (Fi NB 10" 100 1 No leak (Fi NB 10" 93 1 No leak (Fi NB 10" 90 1 No leak (Fi NB 16" 90 1 No leak (Fi NB 16" 90 1 No leak (Fi	The results are as follows : Cor	nt.		
(Bar) Period (Min.) SPS STEEL PIPE ASTM A53 GR. - - B/API 5L GRADE B SCH.40 - - NB 4" 180 1 No leak (Fi NB 5" 160 1 No leak (Fi NB 6" 130 1 No leak (Fi NB 6" 130 1 No leak (Fi NB 10" 100 1 No leak (Fi NB 10" 93 1 No leak (Fi NB 10" 90 1 No leak (Fi NB 10" 90 1 No leak (Fi NB 16" 90 1 No leak (Fi				
SPS STEEL PIPE ASTM A53 GR. NB B/API 5L GRADE B SCH.40 NB 4" NB 4" 180 1 NB 5" 160 1 NB 6" 145 1 NB 6" 130 1 NB 6" 130 1 NB 10" 100 1 NB 10" 93 1 NB 12" 93 1 NB 14" 90 1 NB 16" 90 1	Description/Part No.	Test Pressure	Maintaining	Results
B/API 5L GRADE B SCH.40 I No leak (Fi NB 4" 180 1 No leak (Fi NB 5" 160 1 No leak (Fi NB 6" 145 1 No leak (Fi NB 8" 130 1 No leak (Fi NB 10" 100 1 No leak (Fi NB 10" 93 1 No leak (Fi NB 12" 93 1 No leak (Fi NB 14" 90 1 No leak (Fi NB 16" 90 1 No leak (Fi		(Bar)	Period (Min.)	
B/API 5L GRADE B SCH.40 I No leak (Fi NB 4" 180 1 No leak (Fi NB 5" 160 1 No leak (Fi NB 6" 145 1 No leak (Fi NB 8" 130 1 No leak (Fi NB 10" 100 1 No leak (Fi NB 10" 93 1 No leak (Fi NB 12" 93 1 No leak (Fi NB 14" 90 1 No leak (Fi NB 16" 90 1 No leak (Fi				
NB 4" 180 1 No leak (Fi NB 5" 160 1 No leak (Fi NB 6" 145 1 No leak (Fi NB 8" 130 1 No leak (Fi NB 10" 100 1 No leak (Fi NB 10" 93 1 No leak (Fi NB 12" 93 1 No leak (Fi NB 14" 90 1 No leak (Fi NB 16" 90 1 No leak (Fi				
NB 5" 160 1 No leak (Fi NB 6" 145 1 No leak (Fi NB 8" 130 1 No leak (Fi NB 10" 100 1 No leak (Fi NB 12" 93 1 No leak (Fi NB 12" 93 1 No leak (Fi NB 14" 90 1 No leak (Fi NB 16" 90 1 No leak (Fi	THE CONTRACTOR OF THE CONTRACT PRODUCTION OF CONTRACTS OF THE CONTRACTS		_	
NB 6" 145 1 No leak (Fi NB 8" 130 1 No leak (Fi NB 10" 100 1 No leak (Fi NB 12" 93 1 No leak (Fi NB 12" 93 1 No leak (Fi NB 14" 90 1 No leak (Fi NB 16" 90 1 No leak (Fi				No leak (Fig.13)
NB 8" 130 1 No leak (Fi NB 10" 100 1 No leak (Fi NB 12" 93 1 No leak (Fi NB 14" 90 1 No leak (Fi NB 16" 90 1 No leak (Fi				No leak (Fig.14)
NB 10" 100 1 No leak (Fi NB 12" 93 1 No leak (Fi NB 14" 90 1 No leak (Fi NB 16" 90 1 No leak (Fi				No leak (Fig.15)
NB 12" 93 1 No leak (F) NB 14" 90 1 No leak (F) NB 16" 90 1 No leak (F)			1	No leak (Fig.16)
NB 14" 90 1 No leak (F) NB 16" 90 1 No leak (F)			1	No leak (Fig.17)
NB 16" 90 1 No leak (F			1	No leak (Fig.18)
				No leak (Fig.19)
Remark: This report is valid exclusively for what we have investigated based on samples and information growiding by the	NB 16"	90	1	No leak (Fig.20)
Remark: This report is valid exclusively for what we have investigated based on samples and information providing by the			-	
Remark: This report is valid exclusively for what we have investigated based on samples and information providing by the c				
	Remark: This report is valid exclusively for v	that we have investigated by	ased on samples and inform	ation providing by the client.
TIETD				TIETD
-2018				-valk

Test Date	: Decembe	er 13, 2013		
Testing Laboratory	i 1 st Fl.,Bu	areau of Industrial Sectors I	Development Building, Roon	n 104
Customer		eel Pipes Co.,Ltd		
Sample	: ASTM/A	SME A/SA 53 Grade B SO	CH 40 / API5L Grade BSCH4	40
Temperature	22.8 °C,	Relative Humidity: 47 %	%RH	
Tested by	: Spectrola	ab Model : M8, Type : LAV	VWA 18A, S/N : 4N0149	
				Unit : % by we
Sample Name	e	ASTM/ASME A/	SA 53 Grade B SCH 40 / API5I	Grade BSCH40
Sample Size (In	ch)	2-1/2	3	4
Operation No).	TC 573161	TC 573164	TC 573167
Element		Results	Results	Results
С		0.1685	0.1362	0.1334
Si		0.1149	0.1969	0.2026
Mn		0.2099	0.5456	0.3908
P		0.0058	0.0184	0.0199
s		0.0035	0.0279	0.0112
Cr		0.0572	0.0139	0.0611
Mo		0.0106	0.0011	0.0031
Ni		0.0371	0.0094	0.0167
AI		0.0116	0.0046	0.0022
Cu		0.1126	0.0076	0.0300

0.0075

0.0002

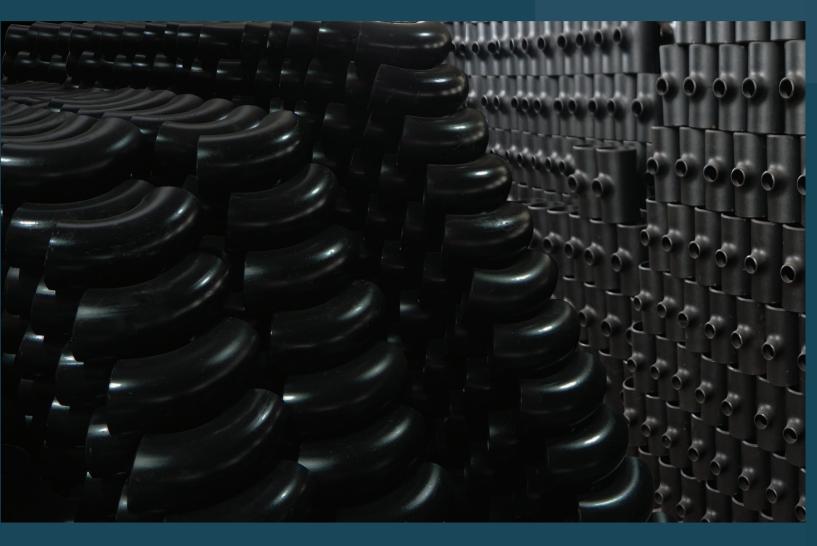
TESTING CENTER

Attachment 1 : Chemical composition test results (Cont.)

Page 4 of 16

December 16, 2013

0.0155


0.0003

สถาบันเหล็กและเหล็กกล้าแห่งประเทศไทย IRON AND STEEL INSTITUTE OF THAILAND

: 570486

ISIT No. 0664/2014

Request No.

SPECIFICATION

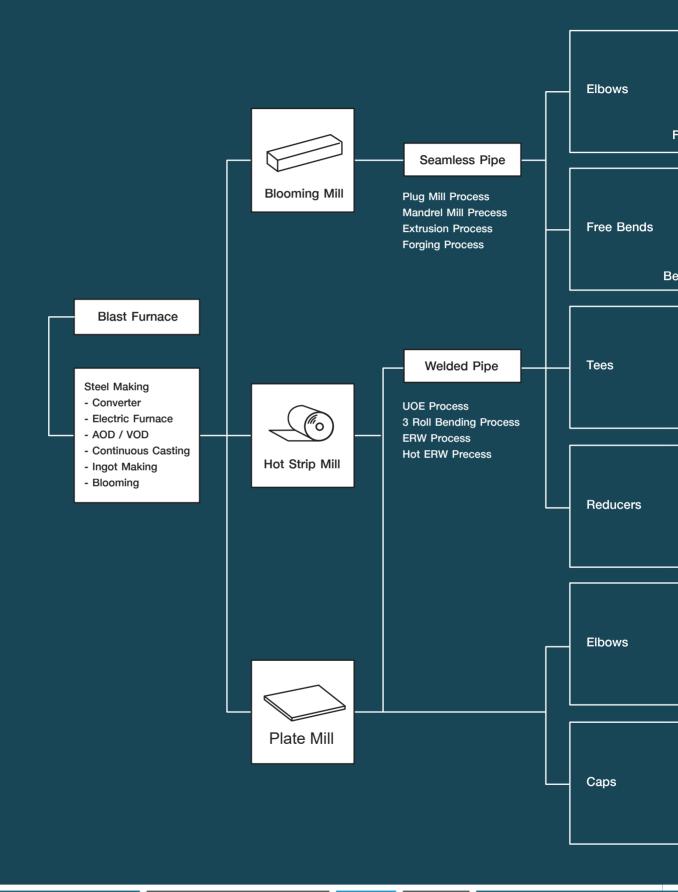
CARBON STEEL FITTINGS

STANDARD : ASTM A 234 WPB, ASME B 16.9 Wall Thickness : SCH40 SIZE : 1/2" - 24"

SPECIFICATION

SEAMLESS CARBON STEEL FITTINGS STANDARD : ASTM A234 WPB, ASME B 16.9

Wall thickness : SCH20, SCH40, SCH80 SIZE : 1/2" - 24"


SPS Fitting

C

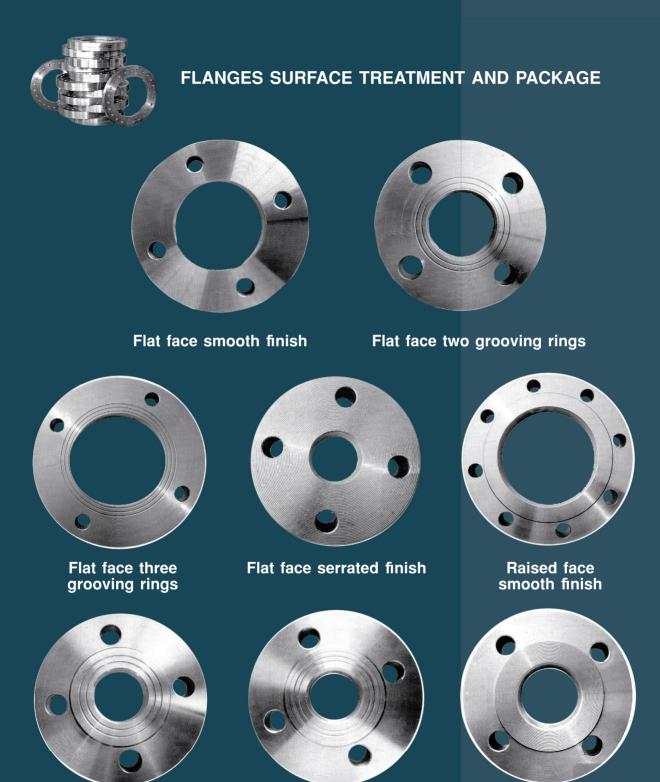
Fittings are used for joining pipes together, for example, elbow, tee and reducer.

MANUFACTURING PROCESS

Forming (Mandrel Method) Re-Forming	Heat Treating	Beveling
		<u>ve</u>
Bending (Heating by High-Frequency)		Beveling
Pre-Forming to Ellipse Draw out	Heat Treating	Beveling
		<u></u>
Press	Heat Treating	Beveling
		<u> </u>
Plate Cutting Press Weld	ding Heat Treating	Beveling
		<u>~~</u>
Plate Cutting Press	Heat Treating	Beveling

SPECIFICATION

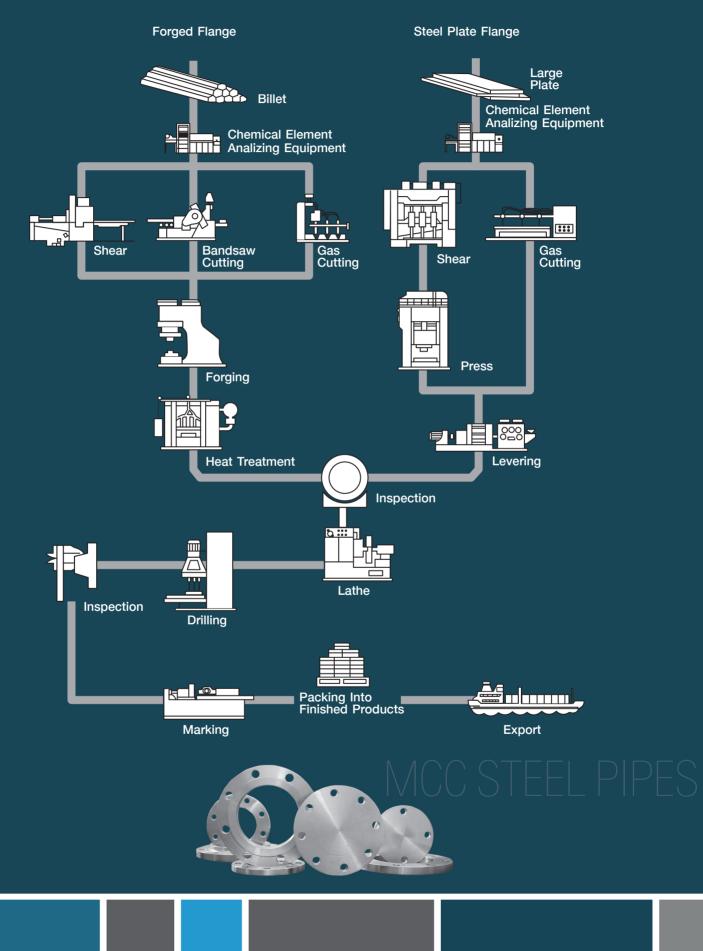
FLANGE


STANDARD : FORGED CARBON STEEL ASTM A 105 N, ANSI 16.5 Specification : ANSI 150, 300, DIN PN 10, PN 16, JIS 5K, 10K, 20K SIZE : 1/2" - 24"

SPS Flange

Flanges are an integral part for pipe fitting. Several types of flange are available for different applications and loading pressures.

FLANGES SURFACE TREATMENT AND PACKAGE



Raised face with two grooving rings

Raised face three grooving rings

Raised face serrated finish

PROJECT REFERENCE LISTS

MCC STEEL PIPES CO.,LTD.

SIAM PIPELINE SYSTEM CO.,LTD. ท่อเหล็กดำและท่อกัลวาไนท[์] ชนิดมีตะเข็บ (ERW) ภายใต้มาตราฐาน ASTM A53 / API5L GRADE B SCH40 / BS1387-1985 SPS BRAND

2011-2012

โรงงาน ผลิตอาหารสัตว์ ซี พี ลาดหลุมแก้ว จ.ปทุมธานี โรงงาน ผลิตอาหารสัตว์ เบทาโกร จ.ลพบุรี โรงงานไทยซัมซุง อิเล็กทริก ศรีราชา จ.ชลบุรี กาซ่าลูน่า รีสอร์ท แอนด์ สปา บางแสน จ.ชลบุรี โรงงาน อายิโนะ โมโตะ จ.อยุธยา โรงน้ำตาล มิตรผล ด่านช้าง จ.สุพรรณบุรี โรงน้ำตาล มิตรผล ภูเรือ จ.เลย

2013

ศาลาดนตรี มหาวิทยาลัยรังสิต KMP NEW FACTORY บางนา กม.23 โรงงาน ซัมมิท แหลมฉบัง โอโต บอดี้ เวิร[์]ค (SLAB) จ.ชลบุรี L.B.S.PIAMACEUTICAL FACTORY ลำลูกกา จ.ปทุมธานี โรงน้ำตาล สหเรือง จ.มุกดาหาร ศูนย์การค[้]า CENTRAL FESTIVAL หาดใหญ่ จ.สงขลา

2014

ศูนย์การค้า THE EMPORIUM สุขุมวิท 24 CENTRIC AREE STATION ซ.พหลโยธิน อาคาร นันทนาการ มหาวิทยาลัยรังสิต โครงการ DHL ลาดกระบัง กรีนพอยท์อินเตอร์เทรค มีนบุรี โครงการ RBI/MPJ โลจิสติกส ์เซ็นเตอร์ DANA NEW GEAR PLANT นิคมอุตสาหกรรมเวลโกร์ว CONDOLETTE IZE RATCHATHEWI PROJECT โรงงาน กองเกียรติ เท็กซ์ ไทล์ หนองแค จ.สระบุรี โรงงาน ยาง GOOD YEAR รังสิต จ.ปทุมธานี โรงงาน NESTLE นวนคร จ.ปทุมธานี โรงงาน ผลิตยา LBS ลำลูกกา จ.ปทุมธานี โครงการ KRC9 แหลมฉบัง จ.ชลบุรี NEW GEAR PLANT PHASE PROJECT ศรีราชา จ.ชลบุรี โรงงาน SANDEN กม.69 จ.สิงห^{ู้}บุรี ห้างแหลมทอง จ.ระยอง โครงการ มิตรภูหลวง จ.เลย เบนมาร์ค จ.นครราชสีมา 8 OVER 8 LUXURY HOTEL จ.ภูเกี้ต THE BASE HEIGHT จ.ภูเก็ต

2015

อาคาร โตโยต่ำบัสซ ์วิภาวดี โรงงาน โปรเห็ด เจริญนคร 14 แกรนโฮมมาร์ท บางนา ศนย์การค้า FASHION ISLAND รามอินทรา อาการ เรียนรวม มหาวิทยาลัยรังสิต โครงการ รถไฟฟ้าสายสีแดง สัญญา 2 หลักหก-รังสิต 2015-2017 PRESIDENTIAL AND DIPLOMAT SUITES RENOVATIC สูบุมวิท ้โรงงาน ฮิตาชิ 1 นิคมอุตสาหกรรมกบินทร*์*บุรี โรงงาน ต[้]ายี่ นิคมอุตสาหกรรมเหมราช โครงการ NESTLE นิคมอุสาหกรรม บางปฺ โรงงาน อินซูโฟม บ้านแพ้ว จ.สมุทรสาคร BRIDGESTONE นวนคร จ.ปทุมธานี โรงงาน เซ็ปเป้ ลำลูกกา คลอง13 จ.ปทุมธานี โรงงาน เลิศลอยเมทัลชีส จ.นครปฐม THE PATIO SEAVIEW บางแสน จ.ชลบุรี โรงน้ำตาล เกษตรไทย จ.นครสวรรค์ 2012-2015 โรงงาน แบตเตอร์รี่ หัวเว่ย นิคมฯเหมราช จ.ระยอง โครงการ T-PARK วังน้อย จ.อยุธยา วางท่อกาซ PTT 161 จ.นครนายก อาการเรียนรวม มหาวิทยาลัยราชภัฏอุดรธานี จ.อุดรธานี THE RISE RESIDENCE หาดใหญ่ ง.สงขลา โครงการ SCG บ้านโป่ง จ.ราชบุรี โรงน้ำตาล เกษตรไทย จ.ชัยภูมิ โรงงาน COCA-COLA สปป. ลาว

2016

โครงการ มหาวิทยาลัยบางมด เขตบางขุนเทียน (ว.ม.ว) โครงการ ศาลาว่าการกรุงเทพมหานคร 2 ดินแดง โครงการ EPISODE สะพานใหม่ โรงเรียน เด่นหล้า ราชพฤกษ์ โครงการ โรงแรมริเวอร์ซิตี้ โครงการ AAE ENGINEERING (THAILAND) โครงการ APCON แพรกษา จ.สมุทรปราการ โรงงาน น้ำมันพืชไทย จ.นครปฐม โรงงาน เถ่าแก่น้อย จ.อยุธยา โครงการ โรบินสัน จ.จันทบุรี โครงการ โรงไม[้]อัด CTS ปั๊กธงชัย จ.นครราชสีมา โรงงาน EXOTIC FOOD จ.ระยอง โรงงาน ESFV (INDORAMA) นิคมฯมาบตาพุด จ.ระยอง โครงการ อุโมงค์ส่งน้ำช่วงแม่งัด - แม่กวง จ.เชียงใหม่ 2016-2019 โครงการ คณะวิทย์ ราชภัฏสงขลา จ.สงขลา เหมืองแร่ โปรแตนท ์จ.นครราชสีมา โครงการ KKN #3 เกาะกง ประเทศกัมพูชา

2017

โรงไฟฟ้า (EGAT) ท่าตะโก จ.นครสวรรค์ โรงไฟฟ้า (EGAT) จ.มุกดาหาร โรงไฟฟ้า (EGAT) จ.ขอนแก่น โรงไฟฟ้า (EGAT) จ.ภูเก็ต 1 โรงไฟฟ้า (EGAT) จ.ภูเก็ต 3 โรงไฟฟ้า (EGAT) บางประกง ์ โรงไฟฟ้า (EGAT) จ.อุบลราชธานี โรงไฟฟ้า (EGAT) จ.หาดใหญ่ โรงไฟฟ้า (EGAT) จ.ฉะเชิงเทรา 2 โรงไฟฟ้า (EGAT) ท่าถี่ จ.เลย โรงไฟฟ้า (EGAT) จ.พิจิตร โรงไฟฟ้า (EGAT) จ.สระบุรี 5 โรงไฟฟ้า (EGAT) จ.ลำพูน 2 โรงไฟฟ้า (EGAT) ท่าตะ โกเบย ์ 6 โครงการ น้ำมันพืชไทย TVO 1 จ.นครปฐม องค์การ เภสัชกรรม คลอง 10 จ.ปทุมธานี ้โรงงาน แอควานซ์ไฟเบอร ์จ.กาญจนบุรี โครงการ CITY LINK จ.นครราชสีมา ์ โรงงานน้ำตาล มิตรผลภูเขียว จ.ชัยภูมิ ปรับปรุงเงื่อนแม่สรวย จ.เชียงราย โรงแรม จัสมิน สุขุมวิท ซอย 59 โรงพยาบาล สินแพทย ์บางนา ์ โรงพยาบาล สินแพทย[์]เทพารักษ์ คอนโด ซี เอกมัย สุขุมวิท 63 อาคารหลังใหม่ของภาควิชาวิศวกรรมอุตสาหกรรม และ ภาควิชาวิศวกรรมเครื่องกล มหาวิทยาลัยเกษตรศาสตร[์] บางเขน โครงการ SUVARNABHUMI AIRPORT EXPANSION (เฟส 1) โครงการ SUVARNABHUMI AIRPORT EXPANSION (เฟส 2) โครงการ สุวรรณภูมิ อาคารเทียบเครื่องบินรองหลังที่ 1 2017-2020

2018

โครงการ HOMEPRO กัลปพฤกษ โครงการ CHAPTER ONE SHINE BANGPO โรงงาน พงษ์จิตต์ บางกอกใหญ่ โครงการ ท่าอากาศยานจังหวัดพิษณุโลก โรงงาน น้ำมันพืช จ.นครปฐม (โกดังใหม่) โรงงาน สยามอุตสาหกรรมยิปซัม จ.สระบุรี โรงงาน สุรีย์ อินเตอร์ฟู้ดส์ จ.สมุทรสาคร โรงน้ำตาล มิตรผล จ.อำนาจเจริญ โรงงาน IMCO PACK จ.สมุทรปราการ

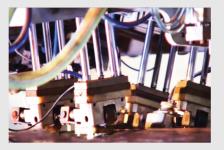
2018

โรงน้ำตาล สกลนคร จ.สกลนคร โรงน้ำตาล พิมาย จ.นครราชสีมา โรงน้ำตาล ไทยกาญจนบุรี โรงงาน น้ำตาลกาพสินธุ์ 2 โรงพยาบาล พริ้นซ์ ฮอสพิทอล สุวรรณภูมิ

2019-20

โครงการ โอสถสภา หัวหมาก อาการปฏิบัติการค^{้า}นดิจิทัล มทส. โครงการ วัน ในน์ ไฟว ์ คอนโด พระราม 9 อาการสำนักงานเมืองไทยประกันชีวิต ถนนสุขุมวิท โรงงาน อายิโนะโมะโต[๊]ะ จ.ปทุมธานี โรงงาน อายิโนะโมะโต[๊]ะ จ.ปทุมธานี โรงงาน ใอ่วี่แปลงยาว จ.ฉะเชิงเทรา โรงงาน ปุ๋ยมิตรผล จ.สระบุรี โรงงาน ยิปชั่ม จ.สระบุรี โครงการ โอสถสภา จ.อยุธยา โรงงาน น้ำตาลอุดรธานี ท่าอากาศยานจังหวัดขอนแก่น

2021


ศูนย์การค่า MEGA MALL บางนา ศูนย์การค่า CRYSTAL DESIGN CENTER (CDC) บางนา โรงพยาบาล สินแพทย์ จ.นครปฐม ้โรงงาน อายิโนะโมะโต[้]ะ จ.ปทุมธานี ธนาคาร ทหารไทย อาการเพชรบุรี จ.ปทุมธานี โรงงาน บจก.เนสท์เล่ (ประเทศไทย) จ.ระยอง โครงการ ไทวา แม่สอค จ.ตาก โรงงานอายิโนะโมะโต[้]ะ จ.กำแพงเพชร โรงงานไฟฟ้า (EGAT) พังโคน จ.สกลนคร โรงงานไฟฟ้า (EGAT) ชัยบาคาล จ.ชัยภูมิ ์ โรงงานไฟฟ้า (EGAT) บำเหน็จณรงค์ จ.ชัยภูมิ โรงงาน COCA-COLA จ.นครราชสีมา ์ โรงงานน้ำตาล คอน สีคิ้ว จ.นครราชสีมา มหาวิทยาลัย เทคโนโลยีสุรนารี จ.นครราชสีมา โรงงาน บจก.สิงห[์]ไทย สตีล จ.ปราจีนบุรี ้โรงพยาบาล สินแพทย ์จ.กาญจนบุรี โครงการ SCG จ.กาญจนบุรี ดุโฮม จ.สุราษฎร์ธานี

QUALITY CONTROL

Online Ultrasonic Test For Plate

Offline Ultrasonic Test

Chemical Composition Test

Flattening Test

Tensile Strength, Yield And Elongation Test

Hydrostatic Test

Charpy Impact Test

Impact Test

235 Moo 5, Phuntainorasing Subdistrict Muang Samutsakorn District, Samutsakorn Province Tel : 034-458-005, 034-458-006 Fax : 034-458-009 E-mail : sale@mccsteelpipes.com Line : @mccsteel www.mccsteelpipes.com

